常见八股
map 的扩容原理
// A header for a Go map.
type hmap struct {
// Note: the format of the hmap is also encoded in cmd/compile/internal/reflectdata/reflect.go.
// Make sure this stays in sync with the compiler's definition.
count int // # live cells == size of map. Must be first (used by len() builtin)
flags uint8
B uint8 // log_2 of # of buckets (can hold up to loadFactor * 2^B items)
noverflow uint16 // approximate number of overflow buckets; see incrnoverflow for details
hash0 uint32 // hash seed
buckets unsafe.Pointer // array of 2^B Buckets. may be nil if count==0.
oldbuckets unsafe.Pointer // previous bucket array of half the size, non-nil only when growing
nevacuate uintptr // progress counter for evacuation (buckets less than this have been evacuated)
extra *mapextra // optional fields
}
slice 的扩容原理
type slice struct {
array unsafe.Pointer
len int
cap int
}
- 切片是对底层数组的一个抽象,描述了它的一个片段。
- 切片实际上是一个结构体,它有三个字段:长度,容量,底层数据的地址。
- 多个切片可能共享同一个底层数组,这种情况下,对其中一个切片或者底层数组的更改,会影响到其他切片。
- append 函数会在切片容量不够的情况下,调用 growslice 函数获取所需要的内存,这称为扩容,扩容会改变元素原来的位置。
- 扩容策略并不是简单的扩为原切片容量的 2 倍或 1.25 倍,还有内存对齐的操作。扩容后的容量 >= 原容量的 2 倍或 1.25 倍。
- 当直接用切片作为函数参数时,可以改变切片的元素,不能改变切片本身;想要改变切片本身,可以将改变后的切片返回,函数调用者接收改变后的切片或者将切片指针作为函数参数
chan 的原理
type hchan struct {
qcount uint // total data in the queue
dataqsiz uint // size of the circular queue
buf unsafe.Pointer // points to an array of dataqsiz elements
elemsize uint16
closed uint32
elemtype *_type // element type
sendx uint // send index
recvx uint // receive index
recvq waitq // list of recv waiters
sendq waitq // list of send waiters
// lock protects all fields in hchan, as well as several
// fields in sudogs blocked on this channel.
//
// Do not change another G's status while holding this lock
// (in particular, do not ready a G), as this can deadlock
// with stack shrinking.
lock mutex
}
并发控制技术有哪些
- waitgroup
- chan select
- context
- mutex
gmp 调度 link
- 全局队列(Global Queue):存放等待运行的 G。
- P 的本地队列:同全局队列类似,存放的也是等待运行的 G,存的数量有限,不超过 256 个。新建 G’时,G’优先加入到 P 的本地队列,如果队列满了,则会把本地队列中一半的 G 移动到全局队列。
- P 列表:所有的 P 都在程序启动时创建,并保存在数组中,最多有 GOMAXPROCS(可配置) 个。
- M:线程想运行任务就得获取 P,从 P 的本地队列获取 G,P 队列为空时,M 也会尝试从全局队列拿一批 G 放到 P 的本地队列,或从其他 P 的本地队列偷一半放到自己 P 的本地队列。M 运行 G,G 执行之后,M 会从 P 获取下一个 G,不断重复下去。
内存分配和垃圾回收 likn
GC 负责回收堆内存
主流的垃圾回收算法有两大类,分别是追踪式垃圾回收算法和引用计数法( Reference counting )。而 Go 语言现在用的三色标记法就属于追踪式垃圾回收算法的一种。
追踪式算法的核心思想是判断一个对象是否可达,一旦这个对象不可达就可以在垃圾回收的控制循环里被 GC 回收了。那么我们怎么判断一个对象是否可达呢?很简单,第一步找出所有的全局变量和当前函数栈里的变量,标记为可达。第二步,从已经标记的数据开始,进一步标记它们可访问的变量,以此类推。
这个算法最大的问题是 GC 执行期间需要把整个程序完全暂停,不能异步地进行垃圾回收,对实时性要求高的系统来说,这种需要长时间挂起的标记清扫法是不可接受的。所以就需要一个算法来解决 GC 运行时程序长时间挂起的问题。
三色标记
三色标记算法将程序中的对象分成白色、黑色和灰色三类:
白色对象 — 潜在的垃圾,其内存可能会被垃圾收集器回收; 黑色对象 — 活跃的对象,包括不存在任何引用外部指针的对象以及从根对象可达的对象,垃圾回收器不会扫描这些对象的子对象; 灰色对象 — 活跃的对象,因为存在指向白色对象的外部指针,垃圾收集器会扫描这些对象的子对象;
写屏障主要做一件事情,修改原先的写逻辑,然后在对象新增的同时给它着色,并且着色为灰色。 一次完整的垃圾回收会分为四个阶段,分别是标记准备、标记、结束标记以及清理。在标记准备和标记结束阶段会需要 STW,标记阶段会减少程序的性能,而清理阶段是不会对程序有影响的。
gc 时机
- gcTriggerHeap:针对于对内存的分配达到控制计算的触发堆的大小。
- gcTriggerTime :针对在一定时间内没有触发就会触发 GC。
- gcTriggerCycle:针对没有达到指定的轮询次数触发 GC